Dr. Charles A. Hirst

+1 646 409 1630 cahirst@umich.edu

Nuclear materials scientist with extensive coaching and teaching experience.

2022 2015	PhD in Nuclear Science and Engineering MEng in Materials Science (First Class)	MIT University of Oxford
Research	University of Michigan, USA	
2022–present	Postdoctoral Research Fellow in the Nuclear Engineering and Radiological Sciences Department. Supervisor: Kevin Field.	
	• Project : Accelerated irradiation creep testing coupled with self- adaptive accelerated molecular dynamics for scalability analysis.	
	Massachusetts Institute of Technology, USA	
2016–2022	PhD Thesis title: 'Quantifying radiation damage through stored energy released during defect annealing in metals.' Supervisor: Michael Short.	
	 Experimental and simulated annealing of neutron-irradiated Ti using differential scanning calorimetry and molecular dynamics. Simulated recovery of irradiated A1 to determine parameter-space for statistically significant nanocalorimetry measurements. 	
	University of Oxford, UK	
2014–2015	Master's Thesis title: 'Atom probe tomography of unirradiated and proton irradiated Zircaloy fuel cladding'. Supervisor: Michael Moody.	
Teaching	Massachusetts Institute of Technology, USA	
2019–2022	Communication Lab, Department of Nuclear	r Science & Engineering.
	• Over 150 hours 1-on-1 coaching students their communication in presentations, pos	& post-docs to improve sters & journal articles.
Fall 2020	Teaching Assistant, 'Intro to Nuclear Engineer	ing & Ionizing Radiation'.
	• Independently taught three lectures on ra- weekly recitations and office hours, and r	diation damage, held eceived stellar reviews.
Summer 2020	Teaching & Learning Lab: Subject Design &	Teaching Practice.
	 Created a syllabus using backward-design. Developed a unit- level assessment plan using student-centered learning outcomes. 	
	• Designed and delivered a lesson plan feat scaffolding, and goal-directed practice.	uring active learning,

Scientific Contributions	Publications	
2022	(4.) C. A. Hirst , F. Granberg, B. Kombaiah, P. Cao, S. Middlemas, R. S. Kemp, J. Li, K. Nordlund, M. P. Short ' <i>Revealing hidden defects through stored energy measurements of radiation damage</i> ' Sci. Adv. (2022)	
	(3.) C. A. Hirst , C. A. Dennett ' <i>Towards quantitative inference of</i> nanoscale defects in irradiated metals and alloys' Front. Mater. 9 (2022) 888356	
	C. A. Hirst , R. C. Connick, K. P. So, P. Cao, R. S. Kemp, M. P. Short ' <i>On the use of nanocalorimetry to measure radiation damage in metals</i> ' J. Nucl. Mater. (in preparation)	
2021	R. C. Connick, C. A. Hirst , K. B. Woller, J. V. Logan, R. S. Kemp, M. P. Short ' <i>Measuring Very Low Radiation Doses in PTFE for Nuclear Forensic Enrichment Reconstruction</i> ' submitted (2021)	
2020	(2.) M. Jiang, J. Kiyang, C. A. Hirst , C. C. Tasan, 'Effects of defect development during displacive austenite reversion on strain hardening and formability' Metall. Mater. Trans. A 51A (2020) 3832-3842	
2018	(1.) A. Harte, R. Prasath Babu, C. A. Hirst , T. Martin, P. Bagot, M. Moody, P. Frankel, J. Romero, L. Hallstadius, E. Darby, M. Preuss, <i>'Understanding irradiation-induced nanoprecipitation in Zr alloys using parallel TEM and APT'</i> J. Nucl. Mater. 510 (2018) 460-471	
	Presentations	
2022	(12.) Materials Research Society (MRS) Spring Meeting 'Quantifying radiation damage through stored energy released during defect annealing in metals' - Poster	
	(11.) The Minerals, Metals & Materials Society (TMS) 'Revealing hidden defects through stored energy measurements of radiation damage'	
2021	(10.) Invited Talk – Materials Science & Technology (MS&T) 'Revealing hidden defects through stored energy measurements of radiation damage'	
2020	(9.) The Nuclear Materials Conference (NuMat) 'Investigating radiation damage evolution through simulations and experiments measuring the energy stored in defects'	
	(8.) The Minerals, Metals & Materials Society (TMS) 'Direct measurement of radiation damage through the energy stored in defects'	

2019	(7.) Mettler Toledo Flash DSC Conference 'Developing a method to measure radiation damage in metals using calorimetry'
	(6.) Materials in Nuclear Energy Systems (MiNES) 'Developing a method to quantify radiation damage using stored energy: simulations and experiments'
	(5.) Idaho National Lab, Materials & Fuels Complex Seminar Series 'Development of Flash DSC techniques to quantify radiation damage using stored energy'
2018	(4.) The Nuclear Materials Conference (NuMat) 'Developing a method to quantify radiation damage using stored energy'
	(3.) International Conference on Nuclear Engineering (ICONE) 'Quantifying Radiation Damage Using Stored Energy Fingerprints'
	(2.) The Minerals, Metals & Materials Society (TMS) 'Quantifying radiation damage using stored energy fingerprints'
2017	(1.) Mettler Toledo Flash DSC Conference 'Quantifying radiation damage using stored energy fingerprints'
	Science Communication articles
2019	Abstract; Slide Design; Delivery and Q&A Virtual Presentations.
Awards	Massachusetts Institute of Technology, USA
2021	NSUF Rapid Turnaround Experiment – Principal Investigator 'Verifying Wigner energy measurements by in situ TEM annealing of neutron-irradiated Ti'
2020	School of Engineering: <i>Exponent Fellowship</i> . Awarded in recognition of an outstanding academic record, exceptional background, and promising future.
	University of Oxford, UK
2014	Gibbs Prize for best overall performance in Part I. For achieving the highest mark in Final Examinations.

Professional Service & Societies

2020-present	The Materials Society (TMS) Nuclear Materials Committee Member of the Subcommittee on Programming.
2019–present	American Nuclear Society (ANS) – Student Member
2018–present	The Materials Society (TMS) – Student Member
2011-present	Institute of Materials, Minerals and Mining (IOM3) – Member